Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

MELDUNG/124: Nachrichten aus Forschung und Lehre vom 19.05.10 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen


→  Mit neuen Strahlungsquellen am DESY - Einblicke in virale Strukturen
→  Das molekulare Netzwerk der "Todesrezeptoren" auf dem Prüfstand
→  Potential für Schnelltest zur Unterscheidung von fruchtbaren und unfruchtbaren Spermien

Raute

Universität zu Lübeck - 17.05.2010

Mit neuen Strahlungsquellen am DESY - Einblicke in virale Strukturen

Biochemiker der Universitäten Lübeck und Hamburg richten eine Forschungsgruppe ein, mit der der Bauplan neuer Viren wirksamer aufgeklärt werden soll. Damit wollen sie die Methoden zum Design neuer antiviraler Wirkstoffe weiterentwickeln. Das Bundesministerium für Bildung und Forschung finanziert das Vorhaben mit rund einer Million Euro für fünf Jahre.

Zur Gründung der Nachwuchsgruppe "Strukturelle Infektionsbiologie unter Anwendung neuartiger Strahlungsquellen" (SIAS) findet am Montag, dem 17. Mai 2010, ein internationales Fachsymposium am Deutschen Elektronen-Synchrotron (DESY) in Hamburg statt (Gebäude 28c, FLASH-Hörsaal, 14 bis 17 Uhr). Dabei geht es unter anderem darum, wie man Strukturinformation aus extrem kleinen Proteinkristallen gewinnen kann.

Um die strukturellen Veränderungen viraler Enzyme bei der Vermehrung der Virus-RNA zu verfolgen, werden am DESY die neuen Strahlungsquellen "FLASH" (ein sog. "Freie-Elektronen-Laser") und PETRA III (ein Speicherring für hochintensive Synchrotronstrahlung) eingesetzt. Leiter der SIAS-Gruppe ist Dr. Lars Redecke, der viele Jahre Erfahrung beim Einsatz von Synchrotronstrahlung zur Aufklärung von Proteinstrukturen aufzuweisen hat.

Seit Mitte der 1990er Jahre tritt fast jedes Jahr irgendwo auf der Welt ein neues Virus auf oder aber eine neue Variante eines schon bekannten Virus. Fast immer handelt es sich um Viren, deren genetische Information in Form von Ribonucleinsäure (RNA) und nicht Desoxyribonucleinsäure (DNA) gespeichert ist. Diese sogenannten RNA-Viren können sich sehr schnell verändern und durch Mutationen neuen Bedingungen anpassen, wie zum Beispiel einem neuen Wirtsorganismus beim Übergang von Tieren auf den Menschen ("Zoonose").

Jüngste Beispiele für Zoonosen sind das SARS-Coronavirus, welches von einer in Südchina lebenden Fledermausart auf den Menschen übertragen wurde und sich dann im Jahre 2003 innerhalb weniger Wochen in 29 Ländern ausbreitete, oder das sogenannte Schweinegrippevirus H1N1, welches im vergangenen Jahr die Welt in Atem hielt. Gegen die meisten RNA-Viren gibt es keine wirksamen Medikamente.

Prof. Dr. Rolf Hilgenfeld und seine Arbeitsgruppe am Institut für Biochemie der Universität Lübeck wollen das ändern. Sie klären die dreidimensionalen Strukturen viraler Enzyme mit Hilfe der Röntgenkristallographie auf und benutzen die resultierende Information dann, um neue Hemmstoffe zu entwerfen und chemisch zu synthetisieren, die die Vermehrung der Virus-RNA blockieren.

Um mehr über die viralen Strukturen zu erfahren, haben sie sich vor einigen Jahren mit Prof. Christian Betzel vom Institut für Biochemie und Molekularbiologie der Universität Hamburg zusammengetan und im Jahre 2007 das gemeinsame "Laboratorium für Strukturbiologie von Infektion und Entzündung" gegründet, welches auf dem DESY-Gelände in Hamburg angesiedelt ist.

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution92

Quelle: Universität zu Lübeck, Rüdiger Labahn, 17.05.2010

Raute

Universitätsmedizin Mannheim - 17.05.2010

Das molekulare Netzwerk der "Todesrezeptoren" auf dem Prüfstand

Forschungsprojekt zu Apoptose-Signalnetzwerken von der Universität Heidelberg aus koordiniert

Im Rahmen einer EU-weiten Initiative zur Systembiologie wird von der Medizinischen Fakultät Mannheim der Universität Heidelberg das internationale ApoNET Forschungsprojekt koordiniert, das mit modernen Genom-Sequenziermethoden und Computermodellen zu einem besseren Verständnis von Apoptose-Netzwerken in Leberzellen beitragen soll. Das Projekt wird im Rahmen des EraSysBio+ Programms mit 1.7 Millionen Euro vom Bundesministerium für Bildung und Forschung und von der Europäischen Kommission gefördert.

Professor Dr. Michael Boutros, Inhaber des Lehrstuhls für Zell- und Molekularbiologie an der Medizinischen Fakultät Mannheim der Universität Heidelberg und Leiter der Abteilung Signalwege und Funktionelle Genomik am Deutschen Krebsforschungszentrum, koordiniert das interdisziplinäre EU-Konsortium ApoNET. Projektpartner sind Professor Dr. Rainer Spang (Universität Regensburg) und Professor Dr. Henning Walczak (Imperial College London, UK).

Neuartige Krebstherapien sind darauf ausgerichtet, gezielt den Zelltod von Krebszellen herbeizuführen ohne normale Zellen zu zerstören. Einige Krebsarten sind jedoch häufig resistent gegenüber diesen Therapien, weil die Krebszellen den programmierten Zelltod (Apoptose) nicht einleiten können. Die Apoptose ist eine Art Selbstmordprogramm, das die betroffenen Zellen aktiv und streng kontrolliert durchführen. In diesem Prozess spielen die so genannten "Todesrezeptoren" eine entscheidende Rolle.

Eine weltweit besonders häufig vorkommende Krebsart ist der Leberzellkrebs. Die Behandlung der Erkrankung scheitert oft an einem blockierten Apoptose-Signalweg. Um effektive Therapien für Leberzellkrebs entwickeln zu können ist es wichtig zu verstehen, wie die Apoptose-Signalnetzwerke in normalen Leberzellen reguliert und in Krebszellen dereguliert sind.

Das ERASysBio+ Konsortium um Professor Boutros hat sich zum Ziel gesetzt, die Funktion der Signalnetzwerke von "Todesrezeptoren" bei Leberzellkrebs systematisch zu analysieren. Die interdisziplinären Arbeiten im Konsortium laufen dabei eng mit den Projektpartnern Professor Spang und Professor Walczak zusammen. Das transnationale Projekt zielt darauf ab, das grundlegende biologische System zu verstehen, welches die Signale in normalen gegenüber veränderten Leberzellen steuert, und damit Vorhersagen in dem System möglich zu machen.

Basierend auf den experimentellen Hochdurchsatz Sequenzierungs-Daten, die die Arbeitsgruppen von Professor Boutros und Professor Walczak erarbeiten, wird die Gruppe um Professor Spang Computer-basierte Modelle generieren, um die kritischen Punkte in der Regulation dieser Signalwege zu finden. Diese statistischen Modelle werden die Wissenschaftler nutzen, um die Aktivitäten dieser Signalwege in Leberzellen zu rekonstruieren und mögliche neue Angriffspunkte für Therapien zu finden.

Zusätzlich zu neuen Erkenntnissen in der Signalweiterleitung durch "Todesrezeptoren" in normalen und veränderten Zellen auf der Systemebene erwarten die Wissenschaftler, dass die Studie auch zu neuen Einsichten der prinzipiellen Mechanismen in der Tumorentstehung und der Therapie von resistenten Tumoren führt.

ERA-Net ERASysBio+ ist ein Programm, das gezielt die Anwendung systembiologischer Forschungsansätze in der Biomedizin von EU-Partnerländern fördert. Ziel ist es, transnationale Forschungs- und Entwicklungsprojekte im Bereich der aufstrebenden interdisziplinären Wissenschaft der Systembiologie zu etablieren. ERA steht für "European Research Area" und damit für die Koordinierung von Forschungs- oder technologischen Entwicklungstätigkeiten in Europa und auf nationalen Ebenen.

Kick-Off Meeting
der transnationalen Forschungsprojekte ERASysBio+
am 17. und 18. Mai 2010 in Paris



Weitere Informationen finden Sie unter
http://www.erasysbio.net/index.php?index=273
Informationen zum Projekt ApoNET

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/pages/de/image116000
Fluoreszenz-gefärbte Leberkrebszellen

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution400

Quelle: Universitätsmedizin Mannheim, Dr. Eva Maria Wellnitz, 17.05.2010

Raute

Ruhr-Universität Bochum - 18.05.2010

RUB-Forscher zeichnen mit nicht-invasiven Methoden präzise chemische 3D-Karten

Highlight in "Chemical Biology" der Royal Society of Chemistry

Bochumer Chemikern ist es gelungen, gesunde und beschädigte Spermien anhand ihrer spektralen, chemischen Signatur in Sekundenschnelle zu unterscheiden. Die Technik hat das Potential für einen neuartigen Fertilitätstest, der nicht nur morphologische sondern auch chemische Signaturen berücksichtigt. Wegen dieser grundsätzlichen Bedeutung wurde die Veröffentlichung als Highlight in "Chemical Biology" und als News in "Chemistry World" der Royal Society of Chemistry im Mai gewürdigt.

Der Motor des Rennwagens Spermium

Die Natur hat Spermien ähnlich wie einen Rennwagen auf ihre Funktion optimiert. Sie bestehen aus verschiedenen subzellulären Organellen und enthalten u.a. Mitochondrien. Mitochondrien sind die Kraftwerke, die die Energie für die Bewegung und Motilität von Spermien liefern, ein wichtiger Faktor für die Befruchtung. Das RUB-Forscherteam konnte feststellen, dass zelluläre Schäden auf molekularer Ebene in den Mitochondrien vorhanden sein können, obwohl Änderungen in Form und Morphologie nicht nachweisbar sind. Dies unterstreicht, dass neben der Morphologie, die üblicherweise für die Charakterisierung von Spermien verwendet wird und in Richtlinien der WHO Manual for Andrology Laboratories vorgegeben ist, nun auch chemische Signaturen zur Charakterisierung aufgenommen werden sollten.

Organellen werden bildlich dargestellt

Das Forscherteam konnte ohne zusätzliche Markierung dreidimensionale, hochaufgelöste chemische Karten erstellen. Dabei nutzt die verwendete Raman-Mikroskopie die charakteristischen Schwingungen der einzelnen Moleküle, um so einen Fingerabdruck der einzelnen zellulären Komponenten zu erhalten. Zusammengesetzt zu einer chemischen Landkarte werden damit Organellen von Spermien visualisiert. Zusätzlich zur optischen Bildinformation wird erstmals die chemische Zusammensetzung von Spermien direkt abgebildet.

Standards ergänzen

Diese Entdeckung könnte dazu führen, dass Standards zur Bestimmung von gesunden und geschädigten Spermien in Zukunft um objektive chemische Marker ergänzt werden, was insbesondere aufgrund der in den letzten 50 Jahren in Durchschnitt weltweit dramatisch gesunkenen Spermienzahl und -beweglichkeit besondere Bedeutung zur Aufklärung der Ursachenkette haben kann. Dieser Bedeutung wurde von der Royal Society of Chemistry, der größten europäischen Gesellschaft für die Förderung der chemischen Wissenschaften, ein Highlight in der Sektion "Chemical Biology" und eine News "Chemistry World" gewidmet.

Förderung durch das BMBF

Die Entwicklung innovativer Spektroskopie- und Mikroskopie-Methoden zur hochauflösenden Abbildung von lebenden Zellen ist einer der Forschungsbereiche am Lehrstuhl für Physikalische Chemie II (Prof. Dr. Martina Havenith-Newen). Konrad Meister, Dr. Diedrich A. Schmidt und Dr. Erik Bründermann nutzten ein Raman-Mikroskop, welches im Rahmen des Projektes BMBF-05KS7PC2 durch das Bundesforschungsministerium gefördert wird.

Weitere Informationen
Dr. Erik Bründermann, Prof. Dr. Martina Havenith
Lehrstuhl für Physikalische Chemie II der Ruhr-Universität
44780 Bochum
E-Mail: erik.bruendermann@rub.de / martina.havenith@rub.de

Titelaufnahme
K. Meister, D. A. Schmidt, E. Bründermann, M. Havenith
Confocal Raman microspectroscopy as an analytical tool to assess the
mitochondrial status in human spermatozoa, Analyst (2010).
DOI: 10.1039/b927012d

Angeklickt
Arbeitsgruppe Havenith-Newen: http://www.rub.de/pc2
- Link zur Publikation:
   http://dx.doi.org/10.1039/b927012d
- Link zu Chemistry World News:
   http://www.rsc.org/ChemistryWorld/
- Link zu Highlights in Chemical Biology:
http://www.rsc.org/Publishing/Journals/cb/Volume/2010/06/picturing_infertility.asp

Redaktion: Meike Drießen

Pressemitteilung Nr. 151
Dr. Josef Koenig
Ruhr-Universitaet Bochum
Pressestelle
Gebäude UV Raum 3/368
Universitätsstraße 150, 44801 Bochum
http://www.rub.de
pressestelle@presse.rub.de

Quelle: Dr. Josef Koenig, Ruhr-Universitaet Bochum, 18.05.2010

Raute

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 20. Mai 2010