Schattenblick → INFOPOOL → UMWELT → WASSER


FORSCHUNG/503: Wettstreit um den Stickstoff - Aerobe Prozesse mischen mit in Sauerstoffminimumzonen (idw)


Max-Planck-Institut für marine Mikrobiologie - 05.09.2016

Wettstreit um den Stickstoff: Aerobe Prozesse mischen mit in Sauerstoffminimumzonen


An den Rändern von Sauerstoffminimumzonen (SMZ) konkurrieren aerobe Ammonium- und Nitritoxidierer schon bei geringsten Sauerstoffkonzentrationen sehr effizient um den vorhandenen Stickstoff. Das geht auf Kosten der anaeroben Mikroorganismen und hat weitreichende und bisher nicht bekannte Auswirkungen auf den Stickstoffverlust in SMZ.

Eine internationale Forschergruppe um Laura Bristow vom Max-Planck-Institut für Marine Mikrobiologie in Bremen hat einen überraschenden Aspekt des Stickstoffkreislaufs entdeckt. Die Forscher führten ihre Untersuchung in sogenannten Sauerstoffminimumzonen (SMZ) durch, die als Hot Spot im Stickstoffkreislauf gelten. SMZ sind Bereiche des Meeres, die denen kein oder nur ganz wenig Sauerstoff vorhanden ist. Sie sind an sich ein natürliches Phänomen, können sich aber durch menschlichen Einfluss zunehmend ausbreiten .

Bristow und ihre Kollegen fanden heraus, das schon kleinste Sauerstoffmengen ausreichen, um Prozesse in Gang zu setzen, die man bisher nur aus sauerstoffreicheren Gewässern kennt. Es geht um die Ammonium- und Nitritoxidation (AmOx und NitOx). "Wenn auch nur ein winziges bisschen Sauerstoff vorhanden war, nützen die Ammonium- und Nitritoxidierer es sofort", erzählt Bristow. An den Randbereichen der SMZ oder wenn vereinzelt Sauerstoff eindringt, erlangen diese Prozesse so besondere Bedeutung. Denn sie sehr konkurrenzstark: Schnell und zielsicher schnappen sie sich die wenigen vorhandenen Sauerstoffmoleküle und setzen dann den Stickstoff in ihrer Umgebung um. Die anaeroben Mikroorganismen gehen leer aus - für Prozesse wie Anammox und Denitrifikation, die in Abwesenheit von Sauerstoff ablaufen, ist nun weniger Stickstoff übrig.

Für den Stickstoffkreislauf ist das insofern bedeutsam, als dass beispielsweise Anammox-Bakterien in SMZ sehr aktiv sind und dort Stickstoffverbindungen in unreaktives Stickstoffgas verwandeln. Die nun entdeckten Ammonium- und Nitritoxidierer hingegen sorgen dafür, dass der Stickstoff verfügbar bleibt. Ihre Aktivität bei ultraniedrigen Sauerstoffkonzentrationen verändert also den Stickstoffkreislauf im Meer, der wiederum den marinen Kohlenstoffkreislauf maßgeblich beeinflusst.

"Bislang hatten wir nicht die technischen Möglichkeiten, um AmOx und NitOx bei den entsprechenden Sauerstoffkonzentrationen zu untersuchen", erklärt Bristow, was sie zur vorliegenden Studie veranlasst hat. "Wie sehr überlappen "aerobe" und "anaerobe" Prozesse in SMZ? Und was bedeutet das für den Verlust von Stickstoff in diesen Bereichen?" Jetzt konnten Bristow und ihre Kollegen eindeutig zeigen: AO und NO haben eine ausgesprochen hohen Affinität zum Sauerstoff.

"Nun müssen wir AmOx und NitOx in unsere Modelle der SMZ einbauen", blickt Bristow in die Zukunft. Zunächst wollen die Forscher den verantwortlichen Organismen auf den Pelz zu rücken. "Wir hoffen, dass bald einige dieser Organismen isoliert werden, oder dass wir mit Hilfe molekularer Techniken mehr über sie erfahren. Dann können wir auch ihre Funktionsweise genauer untersuchen."

Zusatzinformation:
Als lebenswichtiger Nährstoff steuert Stickstoff maßgeblich die Primärproduktion in den Weltmeeren. Mikroorganismen setzen Stickstoff in vielfacher Weise und vielen verschiedenen Formen um (Ammonium, Nitrat, Nitrit, N2-Gas). Manche Formen des Stickstoffs sind für Lebewesen verfügbar, andere nicht. Einige Umwandlungen können nur stattfinden, wenn Sauerstoff vorhanden ist. Ein komplexes Puzzle, von dem bis heute bei weitem nicht alle Steine bekannt sind.

Originalveröffentlichung
Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Laura A. Bristow, Tage Dalsgaard, Laura Tiano, Daniel B. Mills, Anthony Bertagnolli, Jody J. Wright, Steven J. Hallam, Osvaldo Ulloa, Donald E. Canfield, Niels Peter Revsbech and Bo Thamdrup. PNAS.

Participating Institutes
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Southern Denmark, Odense, Denmark
- Aarhus University, Aarhus, Denmark
- Universidad de Concepción, Casilla, Concepción, Chile
- University of British Columbia, Vancouver, Canada



Weitere Informationen finden Sie unter
http://www.mpi-bremen.de

Die gesamte Pressemitteilung inkl. Bilder erhalten Sie unter:
http://idw-online.de/de/news658443

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution536

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Max-Planck-Institut für marine Mikrobiologie, Dr. Fanni Aspetsberger, 05.09.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 8. September 2016

Zur Tagesausgabe / Zum Seitenanfang